
Pergamon 
Int. J. Heat Mass Transfer. Vol. 39, No. 13, pp. 2723~2733, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All fights reserved 

0017-9310/96 $15.00+0.00 

0017-9310(95)00360--6 

Modeling the local and average heat transfer 
coefficient for an isothermal vertical flat plate 
with assisting and opposing combined forced 

and natural convection 
C. J. KOBUS and G. L. WEDEKIND~" 

School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, U.S.A. 

(Received 15 May 1995 and in final form 19 September 1995) 

A~tract--A theoretical model is formulated, utilizing an integral technique, to describe the thermal 
boundary layer development. Special case closed-form solutions are obtained for 0.72 ~< Pr <~ 10 to predict 
the local and average heat transfer coefficient for combined forced and natural convection from an 
isothermal vertical flat plate, for both assisting and opposing flows. No opposing flow closed-form solutions 
are known to exist in the current literature. Assisting and opposing flow experiments were performed to 
measure the average heat transfer coefficient with air for two flat plate heat transfer models of different 
lengths. The predictive capability of the present theoretical model was compared to this experimental data 
with excellent agreement. Excellent agreement is also found to exist with the experimental data and 

numerical solutions of other researchers. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The mode of convective heat transfer which is neither 
dominated by pure forced nor pure natural convec- 
tion, but is rather a combination of the two, is referred 
to as combined forced and natural convection. In such 
instances, the relative direction between the buoyancy 
force and the externally forced flow is important. In 
the case where the fluid is externally forced to flow in 
the same direction as the buoyancy force, the mode 
of heat transfer is termed assistin# combined forced 
and natural convection. In the case where the fluid is 
externally forced to flow in the opposite direction to 
the buoyancy force, the mode of heat transfer is 
termed opposing combined forced and natural con- 
vection. 

A survey of the literature indicates that there has 
been less research in the case of combined forced and 
natural convection than for either pure forced or pure 
natural convection. A good summary of the existing 
research is given by Churchill [1] and more recently 
by Gebhart et al. [2]. A number of theoretical papers 
[3-14] and some limited experimental data [8, 15-18] 
exist in the literature. However, a general closed-form 
solution to the combined problem has not, to the best 
knowledge of the authors, been presented. The intent 
of this paper is to present a simplified theoretical 
model which accurately represents the primary physi- 
cal mechanisms of the combined convection problem 
for both assisting and opposing flows in terms of the 
relevant dimensionless parameters. 

t Author to whom correspondence should be addressed. 

A variety of numerical solutions of the governing 
equations, utilizing solution methods such as local 
similarity [9, 14], local nonsimilarity, perturbation ser- 
ies [7, 12, 13], and finite difference techniques [6, 11, 
19], among others, have been carried out which pro- 
vide valuable insight into combined forced and natu- 
ral convective heat transfer. Merkin [10] pointed out 
the errors associated with a perturbation series 
numerical solution. Ramachandran et al. [17] pointed 
out that numerical results using local similarity, local 
nonsimilarity and finite-difference schemes provide 
identical results for small buoyancy effects, but devi- 
ations occur as the buoyancy effects increase. 

Although numerical solutions are very helpful in 
predicting the influence of the various governing par- 
ameters behind the investigated phenomenon, a 
closed-form solution, even if approximate, generally 
yields more physical insight into the problem, because 
the functional relationship of the relevant physical 
parameters is directly observable. Also, a closed-form 
solution is usually easier to use ; for example, a para- 
metric study can be done on a spread sheet, and does 
not require complex numerical computations. 

Acrivos [4] used singular perturbation expansion 
techniques to approximate the thermal behavior of 
combined convection with the now common coupling 
rule [2, 20], which is an addition of solutions (or 
empirical correlations) of pure forced and pure natu- 
ral convection, each solution raised to the same 
power ; that is, 

Nu ~ = N~v ___ N~N. (1) 

The form of equation (1) is the basis for empirically 
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NOMENCLATURE 

Cp specific heat at constant pressure 
[kJ kg-  J '~C- r] 

d disk diameter [m] 
D test section diameter Ira] 
g gravitational acceleration constant 

[m s 21 
Grx Grashof number, p2g/3(Tw - TOx3/f  
h local convective heat transfer 

coefficient [W m 2 °C- '] 
h- average convective heat transfer 

coefficient [W m 2 ~C-]] 
k thermal conductivity [W m - '  C '] 
L total plate length [m] 
Nu, Nusselt number, hx/k 
Pr Prandtl number, #cp/k 
Re~ Reynolds number, purx/~t 
Ri~ Richardson number, Gr,./Re~ 
t heat transfer model thickness [m] 
T local temperature [K] 
u local axial velocity [m s t] 
uf free-stream velocity [m s ~] 
v local normal velocity [ms '] 
x axial orientation coordinate [m] 

v normal orientation coordinate [m]. 

Greek symbols 
/3 coefficient of thermal expansion [I/K] 
6T(x) thickness of thermal boundary layer 

[m] 
6,(x) thickness of hydrodynamic boundary 

layer [m] 
c(x) upper limit in energy equation, 

equation (2) 
t/ dimensionless velocity coordinate, 

equation (4) 
2 ratio of boundary layer thicknesses, 

equation (10) 
I~ dynamic fluid viscosity [kg m-~ s ~] 
p fluid density [kg m -3] 

dimensionless temperature coordinate, 
equation (5) 

Subscripts 
f free-stream value 
x local based on axial distance 
w value at the base of the plate ; y = 0. 

determined exponents, n, for a variety of geometric 
configurations [1, 2, 20, 2l]. 

Other methods of modeling combined forced and 
natural convection include replacing the buoyancy 
force by a pseudo-velocity [22, 23] in the governing 
equations. Also, by utilizing a modified Reynolds 
number [24], which incorporates a characteristic 
buoyancy-induced velocity along with the free stream 
velocity, B6rner [25], and recently Kobus and Wede- 
kind [26], developed empirical correlations for com- 
bined forced and natural convective heat transfer. The 
latter paper developed empirical correlations for 
different diameter disks and over the entire combined 
forced and natural convection domain, including the 
pure forced and pure natural convection limits. 

Integral techniques have been successfully applied 
to numerous engineering problems, including both 
pure forced and pure natural convective heat transfer 
[21]. However, only limited attempts have been made 
to solve the problem of combined forced and natural 
convection utilizing the integral technique. Acrivos [3] 
obtained an integral formulation, but ended up using 
numerical integration to complete the solution, only 
later to find the results to be in error [4]. Kliegel [15] 
used an integral model for both assisting and opposing 
flow assuming fourth-order polynomial distributions 
for both velocity and temperature profiles, but also 
ended up solving the simultaneous set of ordinary 
differential equations describing the thermal and hyd- 
rodynamic boundary layer development numerically. 

Oosthuizen [27] used a similar integral model to 
obtain a closed-form solution, but only for assisting 
flow, where the thicknesses of the thermal and hyd- 
rodynamic boundary layers were assumed to be equal. 

In addition to limited closed-form solutions, only 
limited experimental data appears to exist in the litera- 
ture for assisting flow, and even less for opposing flow. 
The experimental data available for assisting flow, 
such as that presented by Kliegel [15], Gryzagoridis 
[16], Hishida et al. [8] and Ramachandran et al. [17], 
is for local heat transfer ; the data obtained by meas- 
uring, usually with an interferometer, local heat fluxes. 
Both Kliegel [15] and Ramachandran et al. [17] pre- 
sent limited data for opposing flow where forced con- 
vection is initially dominant. However, there is some 
question as to the validity of part of Kliegel's opposing 
flow data [l 7], since it does not approach the forced 
convection asymptote. To the best knowledge of the 
authors, no experimental data is available in the litera- 
ture for local opposing flow heat transfer where natu- 
ral convection is initially dominant. In addition to the 
local experimental heat transfer data, Oosthuizen and 
Bassey [18] presented experimental data for the aver- 
age heat transfer from a vertical flat plate in air under 
conditions of both assisting and opposing flow, but 
for a very limited range of the Richardson number, 
Ric. 

Since it appears from the existing literature that no 
one has thus far been successful in doing so, the intent 
of this research is to obtain a closed-form integral 
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f 6x(X) 
+ gfl(T-- Tf) dy. (3) 

dy=0 

The upper limit of the integral in the energy equa- 
tion, e(x), depends on the particular boundary layer, 
thermal or hydrodynamic, which extends the greatest 
distance away from the plate. 
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Fig. 1. Schematic of flow geometry and flat plate orientation. 

model solution for combined forced and natural con- 
vection, for both assisting and opposing flows, and 
for a Prandtl number other than unity. Also, the intent 
is to extend the range of experimentally measured 
average heat transfer data for both assisting and 
opposing flows out to both the pure forced and the 
pure natural convection asymptotes. 

FORMULATION OF THEORETICAL MODEL 

Applying the conservation of energy and momen- 
tum principles to a finite control volume, extending 
from the wall to the furthest boundary layer from a 
vertical fiat plate (either thermal or hydrodynamic), 
as illustrated in Fig. 1, assuming negligible conduction 
in the x-direction, and utilizing the conservation of  
mass principle applied to the same control volume, 
then dividing the resulting equations by the length of 
the control volume, Ax, and taking the limit as Ax 
approaches zero, leads to the following governing 
equations : 

Energy equation 

dx Jy=0 \pcpjOy y=o" 

Assistiny flow 
Utilizing the integral technique, a fourth-order 

polynomial expression is assumed for both the vel- 
ocity and temperature distributions. Boundary con- 
ditions for velocity include no slip at the wall, and 
free-stream velocity and zero slope at the extent of the 

l hydrodynamic boundary layer. Two more boundary 
conditions are obtained from the x-component of the 
Navier-Stokes equation, one where every term is 
evaluated at the wall, and the other at the extent of the 
hydrodynamic boundary layer. Boundary conditions 
for temperature include the wall temperature at the 
base of the plate and the fluid temperature and zero 
slope at the extent of the thermal boundary layer. 
As with the velocity profile, two additional boundary 
conditions may be obtained by evaluating each term 
of the differential form of the general energy equation 
both at the wall and at the extent of the thermal 
boundary layer. Therefore, utilizing the boundary 
conditions, the velocity and temperature distributions 
may be expressed, respectively, after considerable 
algebraic rearrangement, as 

u(x,y) = [ ~  pgfl(T,~--p Tr) 6~(x)l(q_3~12 + 3~13 rl4 ) 

+uf(2r/--2r/3q-q4); ~l=y/fv(x) (4) 

T(x,y) = Tf+ (Tw- Tf)(1-2~+2~ 3 _~4) ; 

= y/tx (x). (5) 

It should be noted that the velocity distribution for 
combined forced and natural convection is actually 
the sum of the velocity profiles for pure natural and 
pure forced convection [3, 28], as can be seen in equa- 
tion (4). Substituting equations (4) and (5) into equa- 
tions (3) and (4), the governing differential equations 
are expressed, again after considerable algebraic 
rearrangement and integration, as 

dx(  90722s l_ g 

37 2 t ) }  1 pgfl(Tw - Tf) 63(x ) _ 3_~uf6.r.X ` 
+ 945X---- S uf 

/ 3  1 (u'~ uf 
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where 

For 6~(x) > ~T(X), 

,~.(x) = ~ - i ~  + 280 i g 0  

( 22 322 + ~ . 
2b(X) = ]~ 140 

For aT(X) > 6v(X), 

1 1 
2~(x) =6~-?(262 1 1 

+ 
302: 14023 

( ~  3 2 3 
2b(X) = " 102 + 1522 1402 ~ 

(7) 

(8a) 

(Sb) 

(9a) 

(9b) 

and 

~T(x) 
2 = 2(x) = 6~(x) " (10) 

If2 is allowed to be unity, the coefficients described 
by equations (8) and (9) will yield the same values 
as those presented by Acrivos [3], Kliegel [15] and 
Oosthuizen [27], 2,(x) = 2~ = 11/3024 and 2~(x)= 
2 b = 37/315. This special case generally corresponds 
to forced and natural convection for fluids with 
Prandtl numbers near unity. 

The coupled momentum and energy equations, (6) 
and (7), respectively, can not, in general, be solved 
together except for the special case of Prandtl number 
equal to unity, that is, where 2 = 1. For all other cases, 
the possible solution is complicated by the fact that 
the variable, 2, potentially varies along the length of 
the plate because the buoyancy force increases along 
the length of the plate, while the inertial force due to 
the free-stream velocity remains constant [14]. There- 
fore, for assisting flow, forced convection may domi- 
nate near the leading edge of the plate, where 2 would 
be approximately Pr -~'3, while natural convection 
may dominate farther downstream, where 2 may 
approach a different value, depending of course on 
the pertinent parameters governing the phenomenon. 
However, assuming that the ratio, 2, of the two dis- 

? A one-parameter solution has been presented for pure 
natural convection in heat transfer texts such as Thomas [28] 
and, although not displaying the true Prandtl number effects 
over as wide a range as the two-parameter solution [29], the 
predictive capability is quite good for a limited range of 
Prandtl numbers. 

tinct boundary layers is approximately constant and 
equal to the mean value of the boundary layer thick- 
ness ratio, ~, the momentum and energy equations 
become uncoupled and a one-parameter solutiont 
may be obtained by solving the energy equation alone. 
In this way, 2a and 2 8 a r e  constants and the energy 
equation, (7), becomes 

x dx 

Equation (11) is a non-linear, first-order, constant 
coefficient, non-homogeneous ordinary differential 
equation expressing the development of the thermal 
boundary layer, 6T(X), with the axial coordinate, x. 
Separating the variables, and specifying the boundary 
condition that the thermal boundary layer thickness 
at the leading edge of the plate, x = O, is zero, yields 
a quadratic equation and can thus be solved with the 
solution expressed as 

puf puf 2 

(962,~ p2gfl(Tw7 -- TO x}"2 

,~(x) = (12) 
p2gfl(T,,,- Tr) 

62~ 
/2 2 

or, in dimensionless form as 

\32 ,J \  Pr J] J 

The local convective heat transfer coefficient, h, is 
defined as the local heat flux at the wall divided by the 
temperature difference between the wall and the free- 
stream. Utilizing Fourier's macroscopic model for 
conduction and equation (5), the local dimensionless 
heat transfer coefficient, or Nusselt number, Nu,., can 
be expressed in terms of the thermal boundary layer 
thickness and the axial coordinate, x. Substitution of 
equation (13) into this expression yields a model for 
the local dimensionless heat transfer coefficient in 
terms of the pertinent dimensionless parameters and 
variables governing the combined convection 
phenomenon for assisting flow ; thus, 

1 2 b 1 2bl2 
ReJ. ,'2 

8 Rix 1,2 I/2 

Opposing flow ; natural convection initially dominatin9 
Unlike assisting flow, there can not be a single inte- 

gral model solution for opposing flow describing the 
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local heat transfer characteristics over the entire com- 
bined convection domain. This is born from the fact 
that when natural convection initially dominates, the 
boundary layer originates at the bottom of the plate, 
and, as illustrated in Fig. 1, increases with increasing 
x. However, when forced convection initially domi- 
nates, the boundary layer originates at the top of the 
plate, and increases with decreasing x. Thus, the two 
opposing flow cases will be handled separately and 
independently of one another. 

Assuming natural convection to be initially domi- 
nant, the governing equations, (2) and (3), will not 
change nor will the temperature distribution be altered 
in any way. In fact, the only difference is a single 
boundary condition describing the free-stream vel- 
ocity at the extent of the hydrodynamic boundary 
layer. Referring to Fig. 1, the direction of the free 
stream velocity, uf, will be reversed. This will have the 
effect of changing the sign preceding the free-stream 
term in equation (4), and this effect will in turn propa- 
gate throughout the outlined analysis describing the 
assisting flow, yielding the following dimensionless 
boundary layer development solution : 

\ar.)t\3 ~)+ 1_1~7 ~) 

( 8-~-'~{mx'~]'/=]> 05) 
+ \32aJ\ Pr JJ J" 

As can be seen, the only difference between equa- 
tions (15) and (14) is a change in the sign on one of 
the terms. The dimensionless heat transfer charac- 
teristics for opposing flow where natural convection 
initially dominates may be expressed as 

Nux f /1 2b\ [ / i  2b\ 2 
Re 1,2 = 2RtJ'2 ~t ~ 2-a~) + LtS C)  

8 Rix 112 -1/2 

It should be noted that although the opposing flow 
case where natural convection dominates seems to be 
a simple variation of the assisting flow case, no 
attempt, to the best knowledge of the authors, has 
been made to model the problem from the natural 
convection asymptote, either with the integral tech- 
nique or otherwise. In fact, it was generally believed 
that a solution could only be obtained from the forced 
convection asymptote [27]. 

Opposing flow ;forced convection initially dominating 
The opposing flow case where forced convection 

initially dominates will demand the boundary layer 
development to originate at the top of the plate (Fig. 
1). Thus, the entire coordinate system with respect to 
the boundary layer development is 'switched' to the 
other end of the plate. Hence, with respect to the 
reference frame of the new coordinate system, the 

direction of gravity in Fig. 1 is reversed. This will have 
the effect of changing the sign of the gravity term, g, 
in the momentum equation, (3). Because of this sign 
change, one of the two boundary conditions extracted 
from the Navier-Stokes equation will change sign and 
in turn, the sign in front of the buoyancy portion of 
the velocity distribution, equation (4), will change. 
The temperature distribution will not be affected 
because the energy equation, (2), will not be affected 
by the change in sign of the gravitational term. Thus, 
following the same method described in the previous 
two sections, the solution expressing boundary layer 
development can be obtained yielding 

-(8VRiff]" l, (17) 
t,3aU\er)J Y 

Unlike the previous two cases, a negative sign exists 
in front of the radical. Also, since a negative sign 
appears within the radical itself, the solution will yield 
values for only part of the domain, whereas in the 
opposing flow case where natural convection initially 
dominates, the solution is mathematically valid over 
the entire domain of the Richardson number. The 
dimensionless heat transfer characteristics for oppos- 
ing flow where forced convection initially dominates 
can be expressed as 

NUx f f l  2b~ [ (1  ~.b~ 2 
Rell 2 = 2R,~/2 ( \~ "~]-- L \- ~ -~] 

- \ 3 2 . ] k p r )  j j . (18) 

Although the form of the solution is the same in all 
three flow configurations, the sign changes radically 
alter the predictions of the models. 

COMPARISON OF PRESENT MODEL WITH 
OTHER EXISTING MODELS AND EXPERIMENTAL 

DATA 

The only experimental local convective heat trans- 
fer data available for the combined mode of heat 
transfer is with air. Since air has a Prandtl number 
near unity (Pr = 0.72), the ratio of the thickness of 
the thermal and hydrodynamic boundary layers, 2, 
is about 1.10 for pure natural convection [30], and 
)t = Pr -t/3, approximately 1.116, for pure forced con- 
vection. Therefore, it seems reasonable to assume that 
7. does not vary significantly along the length of the 
plate. Thus, a good estimate of the average boundary 
layer thickness ratio, ~[, would be the algebraic mean of 
the two extreme limits ; pure forced and pure natural 
convection. Incidentally, it can be observed from the 
research of Ostrach [30, 31] that the boundary layer 
thickness ratio, 2, for pure natural convection does 
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Fig. 2. Local combined forced and natural convective heat transfer characteristics from an isothermal 
vertical flat plate in air ; assisting and opposing flows. 

100 

not vary significantly from what is predicted for classic 
forced convection, that is, 2 = Pr ,:3 In fact, for 
0.72 ~< Pr <~ 10, the difference in these values is less 
than 6%t .  Hence, 2 = ~ = P r  -~3 is a very good 
approximation for this important  range of  Prandtl 
numbers and is thus recommended for the present 
model. Utilizing this approximation, excellent agree- 
ment can be seen in Fig. 2 to exist between the present 

t This range of Prandtl numbers encompasses many engin- 
eering fluids, such as the common gases and liquids, e.g. 
water. For Pr = 100 and 1000, the difference between Pr i..3 
and the values obtained by Ostrach [30, 31] is 16 and 33%, 
respectively, while for a Prandtl number of 0.01, cor- 
responding to liquid metals, the difference is significantly 
higher at 76%. 

:~ It should be noted that Lloyd and Sparrow [9] indicated 
that their numerical solution is restricted to Rix ~< 5 due to 
the restriction of the similarity technique to small buoyancy 
effects. 

§ The whole of the opposing flow data of Kliegel [15] was 
not displayed as there was some question of its accuracy, 
addressed by Ramachandran et aL [17], born out of the fact 
that the data asymptoted about 35% lower than the pure 
forced convection boundary layer model [32] predicted. 
However, it is believed that Kliegel's data near the point of 
separation is accurate since it corresponds very closely with 
the data of Ramachandran et al. [17]. 

II It is interesting to note that the numerical solution pre- 
sented by Ramachandran et al. [17] diverges for a Rich- 
ardson number, Rix >1 0.18. Also, as mentioned by Ram- 
achandran et al., Hishida et al. [8] predicted the point of 
separation to occur at a Richardson number of 0.25, but it 
was not clear as to how this value was determined. 

integral model, the available experimental data for 
assisting flow in air and the numerical solution of  
Lloyd and Sparrow~ [9]. 

In the case of  opposing flow, the only available 
experimental data, to the best knowledge of  the 
authors, seems to be between the forced convection 
asymptote and the point referred to in the literature 
as the separation point  [17], represented in Fig. 2 by 
the last of  the data§ of  Kliegel [15] and Ramachandran 
et al. [l 7], at a Richardson number of  approximately 
0.2. Note  that the combined convection Nusselt 
number, Nux, at the point of  separation is significantly 
lower than that of  the pure forced convection asymp- 
tote. The present integral model  developed for oppos- 
ing flow where forced convection effects initially domi- 
nate, apparently does not reach the point of  
separation, because the numerical values under the 
radical of  equation (18) become negative for Rich- 
ardson numbersl[, Rix > 0.18. 

The physics behind the point of  separation in com- 
bined convection is not all clear because of  the lack of  
experimental data in the neighborhood of  the 
phenomenon. Conceptually, however, this point is 
where the velocity at the base o f  the fiat plate has zero 
slope, and therefore only pure conduction heat transfer 
from the plate to the air may occur. It is believed that 
for Richardson numbers beyond the value where the 
separation occurs, natural convection effects must 
become more dominant  and thus there must in fact 
be a flow reversal, until, in the limit as the Richardson 
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number becomes increasingly large, any experimental 
data must approach the pure natural convection 
asymptote from below. 

It is interesting to note that the integral model for 
opposing flow, developed on the assumption that 
natural convection effects initially dominate, seems to 
intersect the point of separation precisely. Regret- 
tably, no experimental data exists demonstrating the 
accuracy of this particular opposing flow solution up 
to the natural convection asymptote, although the 
conceptual argument is made on the basis of physical 
reasoning that any experimental data must approach 
this asymptote. Clearly, the area of combined forced 
and natural convective heat transfer is still in need for 
experimental data, both for opposing flow, and for 
fluids of Prandtl numbers other than 0.72, since it 
appears that the only heat transfer data currently 
available in the literature is for air. 

AVERAGE HEAT TRANSFER 

Theoretical model 
Although the solution for predicting the local heat 

transfer characteristics is very useful in gaining valu- 
able physical insight into the governing physical mech- 
anisms, the average heat transfer predictions are gen- 
erally of greater practical application. The average 
Nusselt number can be expressed in terms of the aver- 
age convective heat transfer coefficient, which in turn 
may be expresse d through the mean value theorem in 
terms of the local heat transfer coefficient. Sub- 
stituting equations (13), (15) and (17), into this 
expression and integrating, the solutions for the aver- 
age heat transfer coefficient may be obtained, albeit 
after considerable algebraic rearrangement and vari- 
able transformations. Thus, 

Assisting flow. 

NUL 22~/2pr(2a) -'/2 
ReL/--- 2 - ~ k~bb] Ric'/z 

+ - ~ r ~ ) R t r J - I }  '/2 . (19) 

Opposing flow ; natural convection initially 
dominates. 

NuL 22~/2Pr[2,~ -'/z 
RV( - 3,/3 Ric"  

x {{~[I  + 24(2"\~r~b)Rtkj'l'/2 -- 1} 

-~r~)RicJ  l + 4 } .  (20, 

Opposing flow ; forced convection initially 
dominates. 

NUL 22~/2pr(2a) -~/2 
RiLl~ 2 

Re 1/2 ~ \ # ]  

x{~[ l_24{2"~Ri l ' /2+ l~  Lj ; 

× { 1 - [ 1  2 4 / 2 , \  q'/2l l/2 

As with the three solutions describing the local heat 
transfer characteristics, virtually all the differences 
between the three different flow configurations for the 
average heat transfer characteristics manifest them- 
selves in sign changes, except for the opposing flow 
case where natural convection initially dominates. 
This is seen in equation (20), which contains an 
additional constant which is not present in the other 
two solutions. Also, the negative terms within the 
radicals of equation (21) restricts the range of appli- 
cability in terms of the Richardson number, which is 
consistent with the restriction on the local heat trans- 
fer solution. It should be noted that, to the best knowl- 
edge of the authors, no attempt has previously been 
made in the literature, either numerical or analytical, 
to predict the average heat transfer coefficient of  a fiat 
plate under the simultaneous influence of buoyancy 
and inertia, except via the combining rule of equation 
(1). 

Experimental apparatus and measurement techniques 
To the best knowledge of the authors, the only 

experimental data available in the literature for the 
average convective heat transfer coefficient for com- 
bined forced and natural convection is presented by 
Oosthuizen and Bassey [18]. This data is only for a 
very limited range of  the Richardson number. There- 
fore, one of the objectives of the current research is 
to supplement the available experimental data in the 
literature. 

The rectangular plates that were used as exper- 
imental heat transfer models for the present exper- 
imental data were modified from circular disk-type 
thermistors, which were used successfully in prior 
experimental work involving flow past stationary cir- 
cular disks [26, 33] for pure forced, pure natural and 
combined forced and natural convective heat transfer. 
The test models were made by carefully grinding the 
edges of a circular disk into a rectangular shape. Ther- 
mistors were chosen as the heat transfer models 
because they provided a unique combination for 
indirectly measuring the surface temperature and the 
convective heat transfer rate. The thermistor was self- 
heated by means of Joule heating. Conduction losses 
through the thermistor lead wires (0.127 mm dia) were 
minimized by using constantan wire [26]. 

Using an electrical circuit such as the one suggested 
by Wedekind [33] and later used by Kobus and Wede- 
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kind [26], the thermistor current and resistance can be 
accurately and simultaneously measured during self- 
heating. This makes it possible to indirectly measure 
not only the convective heat transfer rate, but the 
average temperature of the thermistor as well; the 
latter by having pre-calibrated the resistance/ 
temperature characteristics of each thermistor heat 
transfer model. Thermistors have a high resistance 
coefficient, therefore, the heat transfer surface tem- 
perature could be indirectly measured quite accu- 
rately without the many difficulties encountered in 
attempting to measure the surface temperature by 
conventional means. 

The experimental apparatus and the particular tech- 
nique involved in obtaining indirect measurements of 
the convective heat transfer rate and surface tem- 
perature will only be summarized here, as it is dis- 
cussed in detail in earlier papers [26, 33]. Essentially, 
the average convective heat transfer coefficient can be 
expressed in terms of the heat transfer rate, the heat 
transfer surface area, and the temperature difference 
between the surface and the fluid. The thermistor tem- 
perature may be maintained during a test by adjusting 
the power supply voltage such that the thermistor- 
standard resistor voltage ratio remains constant. 

It is interesting to note that the experimental work 
of Oosthuizen and Bassey [18] utilized similar tech- 
niques to indirectly measure the temperature of plati- 
num strips that were the experimental heat transfer 
models by measuring the voltage drop across the strips 
and utilizing the tabulated value of the resistance- 
temperature coefficient of platinum. However, it 

should be pointed out that the resistance-temperature 
coefficient of thermistor material is much larger than 
that of platinum, such that a small temperature 
difference causes a sizable resistance change, hence 
significantly reducing possible experimental error in 
measuring the resistance and in turn indirectly the 
surface temperature. 

A schematic of the experimental apparatus, which 
amounts to a miniature wind tunnel made possible by 
the small size of the thermistor heat transfer models, 
is shown in Fig. 3 in the assisting flow configuration. 
For the opposing flow experimentation, the diffuser 
section was directly connected to a variable-speed 
blower assembly which would draw air out through 
the bottom of the test section, effectively providing 
flow in the same direction as gravity, thus opposing 
the buoyancy force. Also, for the opposing flow con- 
figuration, a velocity development length was placed 
upstream of the test section. The free-stream air tem- 
perature was measured with a thermocouple probe 
upstream of the heat transfer model. A variable d.c. 
power supply was used as the power source to self- 
heat the thermistor. Digital multimeters were used to 
simultaneously measure the voltage drop across the 
thermistor and standard resistor of known value, 
which was connected in series with the thermistor [26, 
33]. 

Uniformity of velocity upstream of the heat transfer 
model was measured either by a pitot-tube or a hot 
wire anemometer traverse and varied with the flow- 
rate, because, for very low Reynolds numbers, based 
on the inside diameter of the test section, ReD, the 
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Fig. 3. Schematic of experimental apparatus and flat plate orientation. 
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flow in the velocity development section was dearly 
laminar, while for the higher flowrates it was turbulent 
and nearly uniform [33]. Because of the low flowrates 
encountered in combined forced and natural con- 
vection experimentation, a pitot tube could not be 
used over the lower range of available flowrates. 
Therefore, variable-area flowmeters, the smallest of 
which had a full-scale reading of 7.87 cubic cen- 
timeters per second, were used upstream of the diffuser 
section to measure the volumetric flowrate and thus 

indirectly the average velocity. However, because of 
the very low Reynolds numbers, ReD, encountered in 
the velocity development section (well below 2000 for 
the lower flowrates), the average velocity could poten- 
tially vary significantly from the true centerline vel- 
ocity flowing past the heat transfer models. Therefore, 
calibration experiments were performed to establish a 
relationship between the average velocity measured 
with the variable-area flowmeters and the centerline 
velocity measured with a hot-wire anemometer, in 
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Fig. 4. Average combined forced and natural convective heat transfer characteristics from an isothermal 
vertical flat plate in air; (a) assisting flow, (b) opposing flow. 
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both assisting and opposing flow configurations. The 
air velocity was varied by controlling the inlet air 
flowrate for assisting flow, or blower speed for oppos- 
ing flow. Experimental uncertainties were identical to 
those mentioned by Kobus and Wedekind [26] and 
will not be repeated here. 

Two different experimental flat plate heat transfer 
models were tested, the lengths ranging from 12.93 to 
14.61 ram, and a thickness to length aspect ratio, (t/L), 
from 0.096 to 0.108. The edges of the flat plates were 
relatively sharp (edge radius ~- 0.04 mm). For the full 
range of measurements taken, combined forced and 
natural convection free-stream air velocities, ~'f, 
ranged from 0.006 to 3 m s -~ (0.02-10 ft s-~), tem- 
perature differences (T-Tf )  were held constant at 
approximately 56°C (100°F), and the convective heat 
transfer coefficients, h, ranged from 11.440 W 
m 2°C-~ (2-7 Btu hr t - f t  2'~F-~). Property values 
for air, which was at atmospheric pressure, were 
evaluated at the film temperature, T~m, where 
Till m =(Zw-]- T f ) / 2 ,  Reynolds numbers, ReL, ranged 
from 3 to 2000. 

Experimental data ; assisting.flow 
A comparison of the present model and the exper- 

imental data from the present research for assisting 
combined forced and natural convective heat transfer 
is depicted in dimensionless form in Fig. 4(a), along 
with the experimental data of Oosthuizen and Bassey 
[18]. Excellent agreement is clearly seen to exist. The 
present experimental data extends the currently avail- 
able experimental data in the literature by several 
orders of magnitude, and demonstrates excellent 
agreement with both the natural and forced con- 
vection asymptotes for large and small values of the 
Richardson number, respectively. Also, excellent 
agreement is seen with the experimental data available 
in the literature [18]. 

Experimental data ; opposing f low 
The two solutions of the present theoretical model 

are compared with the experimental results of the 
present research for opposing flow heat transfer, and 
are depicted in dimensionless form in Fig. 4(b), along 
with the experimental data of Oosthuizen and Bassey 
[18]. Again, excellent agreement can be observed 
between the two solutions of the present model, cor- 
responding to the cases where forced and natural con- 
vection initially dominate, the present experimental 
data and that of Oosthuizen and Bassey [18]. As can 
be seen from the graph, there is a range of the Rich- 
ardson number between the point where the opposing 
flow solution based on initially dominant forced con- 
vection is no longer valid (RiL ~ 0.2) and where the 
solution based on initially dominant natural con- 
vection diverges from the experimental data 
(RiL ~-- 1). Also, the solution which assumes forced 
convection to be initially dominant does not seem to 
extend very far into the combined convection regime. 
This is seen to be a mathematical limitation of the 

present model. Also, the experimental data presented 
by Oosthuizen and Bassey [18], corresponding to a 
length, L, of 12.7 mm, seems to be slightly high for the 
entire experimental domain of Richardson numbers 
presented, and may be due to experimental uncer- 
tainty in measuring the average temperature of their 
experimental heat transfer models as was discussed 
earlier. 

CONCLUSIONS 

The closed-form solutions to the theoretical model 
presented in the current research should predict well 
for fluids with Prandtl numbers other than Pr = 0.72, 
although there is limited basis for comparison at this 
time, as there is neither sufficient experimental data 
nor numerical solutions in the current literature. To 
the best knowledge of the authors, experimental heat 
transfer data for combined forced and natural con- 
vection is only available for air at this time. However, 
certain simplifying assumptions in formulating the 
present model indicate that the range of Prandtl num- 
bers for which the solutions may be applicable are for 
0.72 ~< Pr <~ 10. Incidentally, the authors have made 
an initial attempt to carry out experiments parallel to 
those presented in this paper, but with water rather 
than air. However, several experimental difficulties 
have limited the experimentation at this time. It is 
hoped that once the experimental difficulties are 
resolved, the model may be shown to predict heat 
transfer coefficients for water as well. This will be the 
subject of future research. 
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